Zero-Configuration Robust Indoor Localization

Hyuk Lim, Lu-Chuan Kung, Jennifer C. Hou, and Haiyun Luo
Department of Computer Science
University of Illinois, Urbana

INDOOR LOCALIZATION

Objective
(1) Fine-grained indoor localization and tracking of 802.11-enabled devices with existing 802.11 (a.k.a. Wi-Fi) WLAN deployments.

(2) Location-Aware Application: Network management, wireless network attacker localizer, and visitor guidance.

Challenges
Time-varying signal strength: Received signal strengths (RSSs) fluctuate due to RF multi-path fading, human mobility, and other dynamic changes of the indoor environment.

• Anisotropy of signal attenuation: RF signals are attenuated differently along different directions.
• Hardware cost: Localization system usually employs expensive and specialized hardware.
• Configuration overhead: Frequent full-scale, on-site survey and training are expensive.

OUR APPROACH

Algorithm
Basic idea: The localization algorithm takes as input the on-line measurements of received signal strengths (RSSs) between 802.11 APs and between a client and its neighboring APs.

Signal-Distance Map (SD-Map): Transformation matrix from a signal strength embedding space to a distance embedding space, which is obtained by truncated singular value decomposition (TSVD) technique.

Key Features
• Zero configuration: Our localization system auto-configures itself on-line and adapts to the system dynamics
• Robustness: We compensate for time-varying and noisy 802.11 signal with the truncated singular value decomposition.
• Accuracy: We achieve an accuracy of 2m (median error) for indoor localization.
• Cost: Our system is grounded on the innovation that turns the off-the-shelf 802.11-enabled devices (Linksys WRT54G) into wireless monitors. These routers are inexpensive ($50 per router).

PERFORMANCE

Localization errors w/wo wireless client assistance. M is the number of wireless monitors.

Implementation
Wireless monitors: Linksys WRT54G wireless routers (v2.2) with a third-party firmware (Sveasoft, Alchemy pre7a) and Kismet (802.11 layer2 wireless network sniffer) drone for MIPS machines.
Measurement server: Linux machine with a web interface for administration (in Perl) and Kismet server.
Localization client: Graphical user interface and localization algorithm written in Java 1.4 using Netbeans.